120. Triangle
problem description
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
algorithm thought
典型的动态规划问题,从底部出发向上遍历。每次选择两个子节点中最小的那一个,并且将它加到自己当前值上。重复操作,知道到根节点。
code
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
for(int i=triangle.size()-2;i>=0;--i){
for(int j=0;j<triangle[i].size();++j){
triangle[i][j]+=min(triangle[i+1][j],triangle[i+1][j+1]);
}
}
return triangle[0][0];
}
};
algorithm analysis
复杂度时间和之前求三角形问题一样,都是O(n²)
Last updated