235. Lowest Common Ancestor of a Binary Search Tree
problem description
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given binary search tree: root = [6,2,8,0,4,7,9,null,null,3,5]

Example 1:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
Example 2:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
Note:
All of the nodes' values will be unique. p and q are different and both values will exist in the BST.
algorithm thought
得到最小公共祖先,对于BST来说不是很难,毕竟BST是有自己的“顺序”的,如果当前节点的值在给定的两个节点之间,直接可以返回当前节点。因为小的那个肯定在左子树,大的肯定在右子树
code
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
int ma=max(p->val,q->val);
int mi=min(p->val,q->val);
while(root){
if(root->val<mi){
root=root->right;
}else if(root->val>ma){
root=root->left;
}else{
break;
}
}
return root;
}
};
algorithm analysis
这里最差情况下,时间复杂度是O(lgn),最坏情况就是在最底层的叶子节点才找到最小公共祖先。
Last updated