57. Insert Interval
problem description
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Input: intervals = [[1,3],[6,9]], newInterval = [2,5]
Output: [[1,5],[6,9]]
Example 2:
Input: intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]
Output: [[1,2],[3,10],[12,16]]
Explanation: Because the new interval [4,8] overlaps with [3,5],[6,7],[8,10].
NOTE: input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature.
algorithm thought
和上一题一样,这里更简单的是,已经直接排好序了。所以,我们只需要找出中间可能有交叉的interval。然后合并。前后没有交叉的interval,就不变,直接插入。
code
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
vector<Interval> insert(vector<Interval>& intervals, Interval newInterval) {
vector<Interval> res;
int index=0;
while(index<intervals.size()&&intervals[index].end<newInterval.start)
res.push_back(intervals[index++]);
while(index<intervals.size()&&intervals[index].start<=newInterval.end){
newInterval.start=min(newInterval.start,intervals[index].start);
newInterval.end=max(newInterval.end,intervals[index].end);
index++;
}
res.push_back(newInterval);
while(index<intervals.size()&&index!=intervals.size())
res.push_back(intervals[index++]);
return res;
}
};
algorithm analysis
这里不需要排序,时间复杂度O(n)
Last updated