225. Implement Stack using Queues
problem description
Implement the following operations of a stack using queues.
push(x) -- Push element x onto stack.
pop() -- Removes the element on top of the stack.
top() -- Get the top element.
empty() -- Return whether the stack is empty.
Example:
MyStack stack = new MyStack();
stack.push(1);
stack.push(2);
stack.top(); // returns 2
stack.pop(); // returns 2
stack.empty(); // returns false
Notes:
You must use only standard operations of a queue -- which means only push to back, peek/pop from front, size, and is empty operations are valid.
Depending on your language, queue may not be supported natively. You may simulate a queue by using a list or deque (double-ended queue), as long as you use only standard operations of a queue.
You may assume that all operations are valid (for example, no pop or top operations will be called on an empty stack).
algorithm thought
使用队列实现一个栈。队列和栈的性质是不同的,一个是FIFO一个是FILO。所以使用队列实现的栈,时间效率肯定很低。
主要要实现的是top和pop操作。其他操作不需要改动。
pop操作:首先得到当前的size,然后执行size-1次,将队列头push到队列尾。size-1次之后,队列头就是开始的队列尾了,也就是最后push进队列的数,也就是stack pop操作需要pop的数字。可以看到这里时间复杂度是O(n),stack的pop操作,时间复杂度是O(1)
top操作:可以像上面一样,使用O(n)时间得到顶元素。但是也可以使用cache减少操作。时间复杂度降低到O(1),在每次push的时候,将cache设置为push的元素。每次pop的时候,将cache重新设置为队列倒数第二个数。这样top操作直接返回cache即可
code
class MyStack {
public:
/** Initialize your data structure here. */
queue<int> qu;
int cache;
MyStack() {
}
/** Push element x onto stack. */
void push(int x) {
cache=x;
qu.push(x);
}
/** Removes the element on top of the stack and returns that element. */
int pop() {
int res=cache;
int times=qu.size();
while(--times){
cache=qu.front();
qu.push(cache);
qu.pop();
}
qu.pop();
return res;
}
/** Get the top element. */
int top() {
return cache;
}
/** Returns whether the stack is empty. */
bool empty() {
return qu.empty();
}
};
/**
* Your MyStack object will be instantiated and called as such:
* MyStack obj = new MyStack();
* obj.push(x);
* int param_2 = obj.pop();
* int param_3 = obj.top();
* bool param_4 = obj.empty();
*/
algorithm analysis
这里面只有pop操作时间复杂度是O(n)的,其他操作都是O(1)
Last updated