662. Maximum Width of Binary Tree
problem description
Given a binary tree, write a function to get the maximum width of the given tree. The width of a tree is the maximum width among all levels. The binary tree has the same structure as a full binary tree, but some nodes are null.
The width of one level is defined as the length between the end-nodes (the leftmost and right most non-null nodes in the level, where the null nodes between the end-nodes are also counted into the length calculation.
Example 1:
Input:
1
/ \
3 2
/ \ \
5 3 9
Output: 4
Explanation: The maximum width existing in the third level with the length 4 (5,3,null,9).
Example 2:
Input:
1
/
3
/ \
5 3
Output: 2
Explanation: The maximum width existing in the third level with the length 2 (5,3).
Example 3:
Input:
1
/ \
3 2
/
5
Output: 2
Explanation: The maximum width existing in the second level with the length 2 (3,2).
Example 4:
Input:
1
/ \
3 2
/ \
5 9
/ \
6 7
Output: 8
Explanation:The maximum width existing in the fourth level with the length 8 (6,null,null,null,null,null,null,7).
Note: Answer will in the range of 32-bit signed integer.
algorithm thought
这题是求每一层的宽度。如果要求宽度,关键是要得到最左和最右节点的位置,然后将两个位置相减就行。关键是如何安排每个节点的值。这里可以用类似heap的表示法。
如果first index base 1,它的子树就是 2index , 2index+1. 如果first index base 0,它的子树就是 2index+1 , 2index+2
然后用DFS或者是BFS遍历数,将最右的值减去最左的值即可。但是如果就这样,不加处理,会在最后两个case失败。因为我们用int类型表达index,这样树最多只能有32层。如果用long类型,树也只能有64层,这两种类型都不能通过测试。
于是我参考了下discuss,发现有人在进入下一层的时候,将index module INT_MAX。保证不溢出。修改代码之后发现能通过。
code
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int widthOfBinaryTree(TreeNode* root) {
if(root==NULL)
return 0;
vector<long> left;
return help(root,left,1,0);
}
long help(TreeNode*root,vector<long>&left,long pos,int level){
if(root==NULL)
return 0;
if(level>=left.size())
left.push_back(pos);
//cout<<pos<<'-'<<left[level]<<' ';
long le=help(root->left,left,(2*pos)%INT_MAX,level+1);
return max(pos-left[level]+1,max(le,help(root->right,left,(2*pos+1)%INT_MAX,level+1)));
}
};
algorithm analysis
DFS遍历树,每次遍历中间时间复杂度为O(1),最后时间复杂度O(n)
Last updated