160. Intersection of Two Linked Lists
Last updated
Last updated
Input: intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3
Output: Reference of the node with value = 8
Input Explanation: The intersected node's value is 8 (note that this must not be 0 if the two lists intersect). From the head of A, it reads as [4,1,8,4,5]. From the head of B, it reads as [5,0,1,8,4,5]. There are 2 nodes before the intersected node in A; There are 3 nodes before the intersected node in B.Input: intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
Output: Reference of the node with value = 2
Input Explanation: The intersected node's value is 2 (note that this must not be 0 if the two lists intersect). From the head of A, it reads as [0,9,1,2,4]. From the head of B, it reads as [3,2,4]. There are 3 nodes before the intersected node in A; There are 1 node before the intersected node in B.Input: intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
Output: null
Input Explanation: From the head of A, it reads as [2,6,4]. From the head of B, it reads as [1,5]. Since the two lists do not intersect, intersectVal must be 0, while skipA and skipB can be arbitrary values.
Explanation: The two lists do not intersect, so return null./**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
int len1=0,len2=0;
ListNode*a=headA,*b=headB;
while(headA){
len1++;
headA=headA->next;
}
while(headB){
len2++;
headB=headB->next;
}
if(len1<len2){
swap(len1,len2);
swap(a,b);
}
int dif=len1-len2;
//cout<<len1<<' '<<len2<<' '<<dif;
while(dif--){
a=a->next;
}
while(a!=b){
a=a->next;
b=b->next;
}
return a;
}
};
//update code
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
ListNode *p1 = headA;
ListNode *p2 = headB;
if (p1 == NULL || p2 == NULL) return NULL;
while (p1 != NULL && p2 != NULL && p1 != p2) {
p1 = p1->next;
p2 = p2->next;
//
// Any time they collide or reach end together without colliding
// then return any one of the pointers.
//
if (p1 == p2) return p1;
//
// If one of them reaches the end earlier then reuse it
// by moving it to the beginning of other list.
// Once both of them go through reassigning,
// they will be equidistant from the collision point.
//
if (p1 == NULL) p1 = headB;
if (p2 == NULL) p2 = headA;
}
return p1;
}
};