141. Linked List Cycle
problem description
Given a linked list, determine if it has a cycle in it.
To represent a cycle in the given linked list, we use an integer pos which represents the position (0-indexed) in the linked list where tail connects to. If pos is -1, then there is no cycle in the linked list.
Example 1:
Input: head = [3,2,0,-4], pos = 1
Output: true
Explanation: There is a cycle in the linked list, where tail connects to the second node.

Example 2:
Input: head = [1,2], pos = 0
Output: true
Explanation: There is a cycle in the linked list, where tail connects to the first node.

Example 3:
Input: head = [1], pos = -1
Output: false
Explanation: There is no cycle in the linked list.

Follow up: Can you solve it using O(1) (i.e. constant) memory?
algorithm thought
这里直接用著名的Floyd判圈算法就行,定义一个快指针一个慢指针,快指针每次走两步,慢指针每次走一步。如果有环两个指针肯定能碰到,如果快指针走到NULL节点,那就没有环
code
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
bool hasCycle(ListNode *head) {
ListNode* slow = head;
ListNode* fast = head;
while(fast && fast->next) {
slow = slow->next;
fast = fast->next->next;
if(slow == fast) {
return true;
}
}
return false;
}
};
algorithm analysis
快指针每次走两步,如果有环,不用n时间两个节点就能碰到。时间复杂度O(n)
Last updated