230. Kth Smallest Element in a BST
problem description
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note: You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Example 1:
Input: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
Follow up: What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
algorithm thought
得到第k个数,这里其实可以利用之前得到数组中k大的数的解法。只是之前那个是要用O(n)时间将第k个数归位,这里是用O(n)时间得到当前root是第几大的数。对于BST来说,只要得到左子节点位置即可
code
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
while(true){
int number=count(root->left);
if(number+1==k){
return root->val;
}else if(number+1<k){
k-=(number+1);
root=root->right;
}else{
root=root->left;
}
}
return 0;
}
int count(TreeNode* root){
if(root==NULL)
return 0;
return 1+count(root->left)+count(root->right);
}
};
algorithm analysis
最坏情况下时间复杂度还是需要O(n)时间。
Last updated